If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905x^2-21x+10=0
a = 4.905; b = -21; c = +10;
Δ = b2-4ac
Δ = -212-4·4.905·10
Δ = 244.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-\sqrt{244.8}}{2*4.905}=\frac{21-\sqrt{244.8}}{9.81} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+\sqrt{244.8}}{2*4.905}=\frac{21+\sqrt{244.8}}{9.81} $
| 6x12=8x9 | | 2(7+3y)+4=-6 | | 3k-k=-4 | | 8x-2(x+5)=-3+6x | | 8x55=85 | | 9b+b=180 | | 6x+14-5x+1=51-9x | | 20–6+4k=2-2k | | 6y-27=75 | | 6(8-2x)=96 | | 2x+1^3=-189 | | 86=2(8n+3) | | 3x-5x+10=2(5-x) | | 3n/2=-15 | | 2x+1^3=-195 | | 1.2/x=3/5 | | 23-4y=7 | | -9=1x+13 | | 3=5n=1=8n+2 | | 209-x=131 | | 0.7x−1.2=0.3x | | 20t-4.9t^2=50 | | 240+.25m=180+.40m | | 2.6y-4=5.1 | | 36=y+5y-12 | | 209=x=31 | | -10p+9p=10 | | -4+x+3=3x+3 | | -(2n+4)+6=–9+4(2n+1) | | 5+6a+3a=12-2=10a | | 3y-2(5y-7)=-9y+6 | | 84-w=199 |